The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (Herpetol. Circ. 29).

Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico: Update

BRIAN I. CROTHER1, JEFF BOUNDY2, JONATHAN A. CAMPBELL3, KEVIN DE QUEROZ4, DARRELL FROST5, DAVID M. GREEN6, RICHARD HIGHTON6, JOHN B. IVERSON6, ROY W. McDIARMID7, PETER A. MEYLAN6, TOD W. REEDER7, MICHAEL E. SEIDEL8, JACK W. SITES, JR.9, STEPHEN G. TILLEY9, DAVID B. WAKE10

1Department of Biology, Southeastern Louisiana University
Hammond, Louisiana 70402, USA; e-mail: bcrotther@selu.edu

2Fur and Refuge Division, Louisiana Department of Wildlife and Fisheries
P.O. Box 98,000, Baton Rouge, Louisiana 70898-9000, USA

3Department of Biology, UTA Box 19498, University of Texas
Arlington, Texas 76019, USA

4Department of Systematic Biology, National Museum of Natural History
Smithsonian Institution, Washington, DC 20560, USA

5Department of Vertebrate Zoology, American Museum of Natural History
Central Park West at 79th Street, New York, New York 10024-5192, USA

6Redpath Museum, McGill University, 859 Sherbrooke Street, W.
Montreal, Quebec H3A 2K6 Canada

7Department of Zoology, University of Maryland
College Park, Maryland 20742, USA

8Department of Biology, Earlham College
Richmond, Indiana 47374-4095, USA

9USGS Patuxent Wildlife Research Center, Smithsonian Institution
P.O. Box 37012, National Museum of Natural History, Room 378, MRC 111
Washington, DC 20013-7012, USA

10Department of Natural Sciences, Eckerd College
4200 54th Avenue S, St. Petersburg, Florida 33711, USA

11Department of Biology, San Diego State University
San Diego, California 92182, USA

12Department of Biological Sciences, Marshall University
Huntington, West Virginia 25701, USA

13Department of Zoology, Brigham Young University
Provo, Utah 84602, USA

14Department of Biology, Smith College
Northampton, Massachusetts 01063, USA

15Museum of Vertebrate Zoology, 3101 VLSB, University of California
Berkeley, California 94720-3140, USA

This publication serves as an update for the most recent list of scientific and standard English names of North American amphibians and reptiles north of Mexico (Crother et al. 2000. SSAR Herpetol. Circ. 29). The list below should be used in conjunction with the previous work (op. cit.). This update includes new taxa described since the previous publication and any taxonomic changes that have led to name changes, both English and scientific.

A number of changes herein concern date of publication of the original species description. In the course of other work, one of us (McDiarmid) reviewed the dates of publication for species of amphibians and reptiles. A primary source was an Index to the Scientific Contents of the Journal and Proceedings of The Academy of Natural Sciences of Philadelphia, published in 1913, pages vii–xiv, in Commemoration of the Centenary of the Academy, March 21, 1912. Data in the publication were drawn primarily from a file of ‘receipt acknowledgments’ received by the Academy from libraries to whom the Journal and Proceedings were sent. While useful in establishing a documented earliest date other than that printed on the volume, these acknowledgments likely were subject to the schedules of the various responding librarians and therefore not always helpful when the year of response was different from the stated date of publication. Another potential source of data are accessions files of the various libraries receiving the publications and initial contact with the library of the American Philosophical Society clarified the date of publication for volume 8 [1856] of the Proceedings. We hope that further research along these lines will provide definitive dates for most of these volumes and expect that additional updates will be needed in the future.

The task of compiling the kind of information that goes into these publications is not trivial. We encourage colleagues to please send reprints concerning any taxonomic changes or decisions relevant to this list. Receiving such reprints will help ensure these names lists are as complete as possible.

Anura — FROGS

Compiled by Darrel Frost

Ascaphus Stejneger, 1899—TAILED FROGS

Ritland et al. (2000, Can. J. Zool. 78: 1749–1758), using randomly amplified polymorphic DNA (RAPD), found large genetic distances between isolated coastal and Rocky Mountain populations of *Ascaphus* in British Columbia, as well as genetic differentiation between north and south coastal populations. Subsequently, Nielson et al. (2001, Evolution, 55: 147–160) reported on mtDNA variation among the isolated populations in the Pacific Northwest, concluding that former *Ascaphus truei* is composed of at least two species, and recognized these as *Ascaphus truei* and *Ascaphus montanus*.

A. montanus Mittleman and Myers, 1949—Rocky Mountain Tailed Frog

A. truei Stejneger, 1899—Coastal Tailed Frog

See Metter (1968, Cat. Am. Amph. Rept. 69) for review (as including *Ascaphus montanus*).

Bufo alvarius Girard, 1859—Sonoran Desert Toad

B. americanus Holbrook, 1836—American Toad

B. a. charlesmithi Bragg, 1954—Dwarf American Toad

Masta et al. (2002, Mol. Phylogenet. Evol. 24: 302–314) found that *Bufo americanus charlesmithi* was concordant with a distinctive mtDNA clade in their analysis, suggesting that it might be an independent lineage.

B. boreas Baird and Girard, 1852—Western Toad

See Schuierer (1963, Herpetologica 18: 262–267). Two (sometimes three, see *Bufo nelsoni*) nominal subspecies are generally recognized, although the geographic variation within *Bufo boreas* is poorly studied and may mask a number of cryptic species.

B. b. boreas Baird and Girard, 1852—Boreal Toad

B. b. halophilus Baird and Girard, 1853—California Toad

B. Fowleri Hinckley, 1882—Fowler’s Toad

Masta et al. (2002, Mol. Phylogenet. Evol. 24: 302–314), on the basis of molecular evidence suggested that *Bufo Fowleri* is a distinct species composed of three molecularly distinctive populations, which require additional study as to their taxonomic status.

B. nebulifer Girard, 1843—Gulf Coast Toad

196 Herpetological Review 34(3), 2003
Mendelson (1994, Occas. Pap. Mus. Nat. Hist. Univ. Kansas 166: 1–21; 1997, Herpetologica 53: 14–30) showed that a number of cryptic species were concealed under the name *Bufo valliceps* and subsequently (Mulcahy and Mendelson, 2000, Mol. Phylogenet. Evol. 17: 173) recognized that nominal *Bufo valliceps* was composed of a northern species (*Bufo nebulifer*) in the USA south to central Veracruz, Mexico, and another (*Bufo valliceps*) from central Veracruz, Mexico, to Costa Rica. Although the scientific name of the Gulf Coast Toad has changed, and the likelihood remains that *Bufo valliceps* (sensu stricto) may still hold some surprises, it is unlikely that *Bufo nebulifer* represents more than one lineage.

B. *nelsonii* Stejneger, 1893—Amargosa Toad
Considered by some to be an allopatric subspecies of *Bufo boreas*. Stebbins (1985, Field Guide W. Rept. Amph., Ed. 2: 70) recognized this allopatric and morphologically distinct population as a distinct species. Altig et al. (1998, Contemp. Herpetol. Inform. Ser. 2: 7) noted its allopatry from *Bufo boreas* as well as fixed differences between larvae. Morphological distinctiveness of the two forms is not controversial.

B. *woodhousii* Girard, 1854—Woodhouse’s Toad
See comments under *Bufo fowleri* in the previous list. The unjustified emendation of the specific epithet to *woodhousii* has been used widely. The status of taxa recognized by Sanders (1987, Evol. Hybrid. Spec. N. Am. Indig. Bufonids: 1–110), has not been evaluated closely by any author, although they have neither enjoyed any recognition. Subspecies in this taxon are controversial, with two (*B. w. australis* and *B. w. woodhousii*) frequently recognized. A third nominal subspecies, *B. w. velatus* Bragg and Sanders, 1951 (East Texas Toad) has been suggested (Sullivan et al., 1996, Copeia 1996: 274–280), to represent part of a zone of hybridization between *Bufo fowleri* and *Bufo woodhousii*, and so should not be recognized as a taxon until this issue is resolved. Detailed study of calls and molecules will likely prove fruitful within this widely distributed species. Masta et al. (2002, Mol. Phylogenet. Evol. 24: 302–314) noted that within *Bufo woodhousii* two distinct mtDNA clades exist which are largely concordant with the nominal subspecies *Bufo woodhousii woodhousii* and *Bufo woodhousii australis*, so additional work is warranted to determine the number of species under this name.

B. *w. australis* Shannon and Lowe, 1955—Southwestern Woodhouse’s Toad

B. *w. woodhousii* Girard, 1854—Rocky Mountain Toad

Gastrophryne olivacea (Hallowell, 1856)—Great Plains Narrow-mouthed Toad

Hyla gratiosa LeConte, 1856—Barking Treefrog

H. wrightorum Taylor, 1939 “1938”—Mountain Treefrog

Until recently (Duellman, 2001, Hylid Frogs Middle Am., Ed. 2: 983–98) considered a synonym of *H. eximia*, in southern Mexico. Nevertheless, the evidence for considering the Mountain Treefrogs as indistinguishable from its Mexican relative was always weak and never consistent with call structure. The status of populations of this species from Mexico (south to, but not including, the Mexico City region) is unknown.

Leptodactylus fragilis (Brocchi, 1877)—Mexican White-lipped Frog

Pseudacris regilla (Baird and Girard, 1852)—Pacific Treefrog

P. *streckeri* A. A. Wright and A. H. Wright, 1933—Strecker’s Chorus Frog

P. s. illinoensis Smith, 1951—Illinois Chorus Frog

Rana *berlandieri* Baird, 1859—Rio Grande Leopard Frog

R. *capito* LeConte, 1855—Gopher Frog

Rana *capito* is considered by some to be part of *R. areolata* (but see Case, 1978, Syst. Zool. 27: 299–311, who considered it distinct). Recognized as distinct from *Rana areolata* by Young and Crother (2001, Copeia 2001: 382–388), who also suggested that the nominal subspecies are arbitrary units.

R. *sevosa* Goin and Netting, 1940—Dusky Gopher Frog

R. *virgatipes* Cope, 1891—Carpenter Frog

Data presented by Pytel (1986, Herpetologica 42: 273) suggest that careful evaluation for cryptic species is warranted.

Caudata — SALAMANDERS

Compiled by Richard Highton, Stephen G. Tilley (Chair), David B. Wake.

Ambystoma cingulatum Cope, 1868—Flatwoods Salamander

Batrachoseps gavilanensis Jockusch, Yanev, and Wake, 2001—Gabilan Mountains Slender Salamander

See annotation under *B. pacificus*.

B. incognitus Jockusch, Yanev, and Wake, 2001—San Simeon Slender Salamander

See annotation under *B. pacificus*.

B. luciae Jockusch, Yanev, and Wake, 2001—Santa Lucia Mountains Slender Salamander

See annotation under *B. pacificus*.

B. minor Jockusch, Yanev, and Wake, 2001—Lesser Slender Salamander

See annotation under *B. pacificus*.

B. pacificus (Cope, 1865)—Channel Islands Slender Salamander

This formerly polytypic species now includes only populations found on the northern Channel Islands off the coast of southern California (Jockusch et al., 2001, Herpetol. Monogr. 15: 54–99; Jockusch and Wake, 2002, Biol. Jour. Linn. Soc. 76: 361–391). Former members of this taxon have been raised to species rank (*B. major*, *B. relicitus*) or described as new species (*B. diabolicus*, *B. gavilanensis*, *B. incognitus*, *B. kawia*, *B. luciae*, *B. minor*, and *B. regius*).

B. robustus Wake, Yanev and Hansen, 2002—Kern Plateau Salamander

B. wrightorum (Bishop, 1937)—Oregon Slender Salamander

Desmognathus brimleyorum Stejneger, 1895—Ouachita Dusky Salamander

D. conanti Rossman, 1958—Spotted Dusky Salamander

parapatric in Tennessee with only very limited hybridization, and that D. conanti consists of two clades of populations that may represent distinct species.

D. fuscus (Rafinesque, 1820)—Northern Dusky Salamander

D. wrighti King, 1936—Pygmy Salamander

Dicamptodon aterrimus (Cope, 1868)—Idaho Giant Salamander

Eurycea cirrigera (Green, 1830)—Southern Two-lined Salamander

See note for E. wilderae.

E. rathbuni (Stejneger, 1896)—Texas Blind Salamander

E. robusta (Longley, 1978)—Blanco Blind Salamander

E. wilderae Dunn, 1920—Blue Ridge Two-lined Salamander

Hemidactylium scutatum (Temminck and Schlegel in Von Siebold, 1838)—Four-toed Salamander

Hydromantes platycephalus (Camp, 1916)—Mount Lyell Salamander

Plethodon jordani Blatchley, 1901—Red-cheeked Salamander

The taxon was restricted to populations in the Great Smoky Mountains by Highton and Peabody (2000, pp. 31–94 in Bruce et al., The Biology of Plethodontid Salamanders, Kluwer Academic/Plenum Publishers), who also suggested the standard English name.

Typhlotriton Stejneger, 1892—Grotto Salamanders

T. speleus Stejneger, 1892—Grotto Salamander

Squamata — LIZARDS

Compiled by Kevin de Queiroz (Chair), Tod W. Reeder, Jack W. Sites, Jr. “Ameiva” Meyer, 1795—AMEIVAS (Introduction)

Taxonomy for “Ameiva” follows Peters and Donoso-Barros (1970, Bull. United States Natl. Mus. 297: 1–293). Reeder et al. (2002, Am. Mus. Novit. 3365: 1–61) presented evidence that “Ameiva,” as currently circumscribed, is not monophyletic, though they did not propose a taxonomic change to rectify this situation. We have placed the name “Ameiva” in quotation marks to indicate the non-monophyletic status of the taxon.

Anniella Gray, 1852—NORTH AMERICAN LEGLESS LIZARDS

A. pulchra Gray, 1852—California Legless Lizard

Pearse and Pogson (2000, Evolution 54: 1041–1046) presented evidence that the melanistic form previously designated Anniella pulchra nigra is polyphyletic, its Monterey Bay and Morro Bay populations having been derived independently from the silvery form previously designated A. p. pulchra. Although Pearse and Pogson did not propose any taxonomic changes, their results indicate that the subspecies A. p. pulchra and A. p. nigra do not correspond with separated or partially separated lineages, and therefore we do not recognize subspecies within A. pulchra. The existence and extent of genetic continuity between melanistic and silvery populations, as well as between northern and southern haplotype clones, deserves further study.

Anolis cristatellus Duméril and Bibron, 1837—Crested Anole (Introduced)

A. c. cristatellus Duméril and Bibron, 1837—Puerto Rican Crested Anole (Introduced)

Apsidoscelis Fitzinger, 1843—WHIPTAILS

Reeder et al. (2002, Am. Mus. Novit. 3365: 1–61) presented evidence that Cheniophorus, as previously circumscribed, is not monophyletic, and they resurrected Apsidoscelis for the clade composed of the species native to North America. Not shown below but necessary to note is that all author names are in parentheses. This change affects the following species names:

C. arizonae becomes A. arizonae

C. burti becomes A. burti (C. b. stictogrammus becomes A. b. stictogramma)

C. dixoni becomes A. dixoni

C. exsanguis becomes A. exsanguis

C. flagellicaudus becomes A. flagellicauda

C. galaris becomes A. galaris (C. g. galaris becomes A. g. galaris)

C. gypsi becomes A. gypsi

C. hyperythrus becomes A. hyperythrus (C. h. beldingi becomes A. h. beldingi)

C. inornatus becomes A. inornata (C. i. heptagrammus becomes A. i. heptagramma, C. i. juniperus becomes A. i. juniperus, C. i. llaneras becomes A. i. llaneras)

C. laredoensis becomes A. laredoensis

C. marmoratus becomes A. marmorata (C. m. marmoratus becomes A. m. marmorata, C. m. reticuloriens becomes A. m. reticuloriens)

C. neomexicana becomes A. neomexicana

C. neomexicanus becomes A. neotessellata

C. neotessellatus becomes A. neotessellata

Herpetological Review 34(3), 2003
C. pai becomes A. pai
C. septemvittatus becomes A. septemvittata (C. s. septemvittatus becomes A. s. septemvittata)
C. sexlineatus becomes A. sexlineata (C. s. sexlineatus becomes A. s. sexlineata, C. s. stephensae becomes A. s. stephensae)
C. sonorae becomes A. sonorae
C. tesselatus becomes A. tesselata
C. tigris becomes A. tigris (C. t. mundus becomes A. t. munda, C. t. punctilinealis becomes A. t. punctilinealis, C. t. septentrionalis becomes A. t. septentrionalis, C. t. stejnegeri becomes A. t. stejnegeri, C. t. tigris becomes A. t. tigris)
C. uniparens becomes A. uniparens
C. velox becomes A. velox
C. xanthodon becomes A. xanthodon

1Reeder et al. (op. cit.) mistakenly used the name A. t. undulata instead of the valid name A. t. munda (see Crother et al., 2000, SSAR Herpetol. Circ. 29).

A. laredoensis (McKinney, Kay and Anderson, 1973)—Laredo Striped Whiptail (unisexual)
Abuhteba et al. (2001, Copeia 2001: 262–266) interpreted hystoicompatability between the members of two pattern classes within Aspidoscelis laredoensis as evidence for separate hybrid origins of the corresponding clones. The authors noted that two of them are planning to restrict the name A. laredoensis to one of the clones and propose a new species name for the other.

A. marmorata Baird and Girard, 1852—Marbled Whiptail
Aspidoscelis marmorata (including A. marmorata marmorata and A. m. reticuloriiens in the United States) was treated as a species by Hendricks and Dixon (1986, Texas J. Sci. 38: 327–402) but as a subspecies of A. tigris by Maslin and Secoy (1986, Contrib. Zool. Univ. Colorado Mus. 1: 1–60) and Wright (1993, Pp. 27–81 in Biology of Whiptail Lizards [Genus Cnemidophorus], J. W. Wright and L. J. Vitt [eds.], Oklahoma Mus. Nat. Hist.). Dessauer and Cole (1991, Copeia 1991: 622–637; see also Dessauer et al., 2000, Bull. Am. Mus. Nat. Hist. 246: 1–148) presented evidence of both differentiation and interbreeding between marmorata and tigris along a transect near the southern part of the border between Arizona and New Mexico, including a narrow (3 km) hybrid zone in which hybrid indices based on color patterns and allele frequencies changed abruptly in concordant step clines. Although those authors interpreted their data as reflecting incomplete speciation between the two forms (i.e., a single species), the same data can be interpreted alternatively as reflecting largely separate gene pools (i.e., two species). Following the terminology of de Queiroz (1998, pp. 57–75 in Endless Forms: Species and Speciation, D. J. Howard and S. H. Berlocher [eds.], Oxford University Press), they are here considered incompletely separated species.

“Cnemidophorus” Wagler, 1830—SOUTH AMERICAN WHIPTAILS
Taxonomy for “Cnemidophorus” follows Peters and Donoso-Barros (1970, Bull. United States Natl. Mus. 297[Part II]: 1–293). Reeder et al. (2002, Am. Mus. Novit. 3365: 1–61) presented evidence that Cnemidophorus, even after the removal of Aspidoscelis, is not monophyletic, though they did not propose a taxonomic change to rectify this situation. We have placed the name “Cnemidophorus” in quotation marks to indicate the non-monophyletic status of the taxon.

Cosymbotus platyurus (Schneider, 1792)—Flat-tailed House Gecko (Introduced)

Crotaphytus vestigium Smith and Tanner, 1972—Baja California Collared Lizard
McGuire (1996, Bull. Carnegie Mus. Nat. Hist. 32: 1–143) noted that the name Crotaphytus vestigium Smith and Tanner is a junior synonym of C. fasciatus Mocquard. Nevertheless, he used the junior synonym as the valid name for the taxon because the senior synonym had not been so used during the last 50 years, while the junior synonym had been used repeatedly. McGuire also noted that C. fasciatus Mocquard is a junior (primary) homonym of C. fasciatus Hallowell (which is itself a junior synonym of Gambelia wislizenii) and that Mocquard, apparently aware of the problem, had provided the new replacement name (nomen novum) C. fasciolatus. Because the junior primary homonym C. fasciatus Mocquard is invalid (ICZN, 1999: Article 57.2), the correct name for this taxon is C. fasciolatus; however, for the reasons noted above, McGuire (2000, Bull. Zool. Nomencl. 57: 158–161) has proposed that C. fasciolatus be suppressed. Until the International Commission on Zoological Nomenclature rules on this proposal, we have followed the Zoological Code (ICZN, 1999: Article 82.1) by maintaining the name in most common current use.

Eumecees “gilberti” Van Denburgh, 1896—Gilbert’s Skink
Richmond and Reeder (2002, Evolution 56: 1498–1513) presented evidence that populations previously referred to Eumecees gilberti represent three lineages that separately evolved large body size and the loss of stripes in late ontogenetic stages. Although they considered those three lineages to merit species recognition, they did not propose specific taxonomic changes in that paper. We have placed the name “gilberti” in quotation marks to indicate that it refers to a group composed of several species.

E. multivirgatus (Hallowell, 1857)—Many-lined Skink
E. m. epipleurotus Cope, 1880—Variable Skink
Hammer (1999, Amphibians and Reptiles in Colorado, Univ. Press of Colorado) argued, based on diagnosability and the apparent absence of intergrades, that Eumecees multivirgatus epipleurotus (under the name E. gaigeae) is a different species than E. m. multivirgatus. We have refrained from adopting this proposal until a more rigorous study is conducted.

E. skiltoni (Baird and Girard, 1852)—Western Skink
Richmond and Reeder (2002, Evolution 56: 1498–1513) presented evidence that the subspecies of Eumecees skiltonia, as currently circumscribed, do not correspond with the boundaries of haplotype clades based on mitochondrial DNA. However, because those authors did not propose a revised subspecies taxonomy, and because resolution of that taxonomy requires more extensive geographic sampling, we have retained the existing subspecies taxonomy (e.g., Tanner, 1988, Cat. Am. Amph. Rept. 447.1).

Hemidactylus turcicus (Linnaeus, 1758)—Mediterranean House Gecko (Introduced)

Holbrookia Girard, 1851—LESSEER EARLESS LIZARDS
H. elegans
Bocourt, 1874—Elegant Earless Lizard

H. e. thermophila
Barbour, 1921—Sonoran Earless Lizard

Lacerta bilineata
Daudin 1802—Western Green Lizard (Introduced)

Leiocephalus carinatus
Gray, 1827—Northern Curly-tailed Lizard (Introduced)

L. c. armouri Barbour and Shreve, 1935—Little Bahama Curly-tailed Lizard (Introduced)

Mabuya
Fitzinger, 1826—MABUYAS

**M. multifasciata** (Kuhl, 1820)—Many-striped Mabuya (Introduced)

Neoseps
Stejneger, 1910—FLORIDA SAND SKINKS

Ophisaurus
Daudin, 1803—GLASS LIZARDS

Phyrnosoma douglasi
Bell, 1829—Pygmy Short-horned Lizard

Podarcis muralis (Laurenti, 1768)—Common Wall Lizard (Introduced)

P. sicula
(Rafinesque, 1810)—Italian Wall Lizard (Introduced)

Sauromalus ater
Duméril, 1856—Common Chuckwalla

Sceloporus jarrovi
Cope, 1875—Yarrow’s Spiny Lizard

Wiens et al. (1999, Evolution 53: 1884–1897; see also Wiens and Penkrot, 2002, Syst. Biol. 51: 69–91) presented evidence that several of the previously recognized subspecies of _Sceloporus jarrovi_ are not monophyletic and that several clades within this species are more closely related to other species in the _S. torquatus_ group than to other populations of _S. jarrovi_. Therefore, they recognized five species for the populations formerly referred to _S. jarrovi_, applying the name _S. jarrovi_ to the only one of those five species that occurs in the United States (corresponding with the set of populations formerly referred to _S. j. jarrovi_). No subspecies were recognized.

S. undulatus (Bosc and Daudin in Sonnini and Latreille, 1801)—Eastern Fence Lizard

Leaché and Reeder (2002, Syst. Biol. 51: 44–68) applied phylogeographic evidence that _Sceloporus undulatus_, as previously circumscribed, is made up of at least four separately evolving lineages, and they applied the name _S. undulatus_ to populations east of roughly the 88th meridian. Their results also suggest that the formerly recognized subspecies _undulatus_ (Southern Fence Lizard) and _hyacinthinus_ (Northern Fence Lizard) are not natural groups (see also Miles et al., 2002, Herpetologica 58: 277–292), and that the deepest genetic division within _S. undulatus_ is not between northern and southern populations but between those east and west of the Appalachian Mountains, though they did not recognize subspecies within _S. undulatus_.

S. consobrinus
Baird and Girard, 1853—Prairie Lizard

See note for _Sceloporus undulatus_. Leaché and Reeder (2002, Syst. Biol. 51: 44–68) applied the name _S. consobrinus_ to the populations formerly referred to _S. undulatus_ from the central United States, most (though not all) of which occur in the plains between the Mississippi River and the Rocky Mountains. Their results also suggest that the formerly recognized subspecies _consobrinus_ (Southern Prairie Lizard) and _garnani_ (Northern Prairie Lizard) are not natural groups, and they did not recognize subspecies within _S. consobrinus_. Leaché and Reeder (op. cit.) noted that the name _S. thayerii_ Baird and Girard 1852 (type locality: Indiana, Calhoun Co., TX) may turn out to be the correct name of this species and that populations east of the Mississippi River along the Gulf Coast may represent a separate species.

S. cowlesi
Lowe and Norris, 1956—Southwestern Fence Lizard

See note for _Sceloporus undulatus_. Leaché and Reeder (2002, Syst. Biol. 51: 44–68) applied the name _S. cowlesi_ to the populations formerly referred to _S. undulatus_ from roughly the region of the Chihuahuan Desert. They did not recognize subspecies within _S. cowlesi_.

S. tristichus
Cope in Yarrow 1875—Plateau Lizard

See note for _Sceloporus undulatus_. Leaché and Reeder (2002, Syst. Biol. 51: 44–68) applied the name _S. tristichus_ to the populations formerly referred to _S. undulatus_ from roughly the region of the Colorado Plateau. Their results also suggest that the formerly recognized subspecies _tristichus_ (Southern Plateau Lizard), _erythrocheilus_ (Red-lipped Plateau Lizard), and _elongatus_ (Northern Plateau Lizard) are not natural groups, and they did not recognize subspecies within _S. tristichus_.

Scincella lateralis
(Say in James, 1823)—Little Brown Skink

Uma notata
Baird, 1859 “1858”—Colorado Desert Fringe-toed Lizard
Trépanier and Murphy (2001, Mol. Phylogenet. Evol. 18: 327–334) presented evidence that *Uma notata*, as previously circumscribed, is paraphyletic; the subspecies *U. n. notata* is more closely related to *U. inornata* than to *U. rufopunctata* (see also Wilgenbusch and de Queiroz, 2000, Syst. Biol. 49: 592–612). They therefore considered the two previously undescribed subspecies to be species.

Urosaurus nigricaudus (Cope, 1864)—Baja California Brush Lizard Aguirre et al. (1999, Herpetologica 55: 369–381) and Grismer (1999, Herpetologica 55: 446–469) presented evidence that *Urosaurus microscutatus* and *U. nigricaudus* constitute a single species, for which the name *U. nigricaudus* has priority and within which no subspecies were recognized. The English name Black-tailed Brush Lizard was applied to *U. nigricaudus* when that species was thought to include only populations from southern Baja California; however, that name is descriptively misleading when applied to the species as currently circumscribed. Although the English name Baja California Brush Lizard has been used for *U. lahetali* (e.g., Stebbins, 1985, A Field Guide to Western Reptiles and Amphibians, Houghton Mifflin Co.; Grismer, 2002, Amphibians and Reptiles of Baja California, Univ. California Press), that species is restricted to a small area in the vicinity of Cataviña (suggesting the English name Cataviña Brush Lizard); in contrast, *U. nigricaudus* is widely distributed in, and more-or-less restricted to, Baja California.

Uta stansburiana Baird and Girard, 1852—Common Side-blotched Lizard Upton and Murphy (1997, Mol. Phylogenet. Evol. 8: 104–113) presented evidence for a distant relationship between *Uta* specimens from Durango versus those from Baja California and surrounding islands (as well as one locality in western Sonora), and they considered the Durango population to constitute a different species, to which they applied the name *U. stejnegeri*. Upton and Murphy’s study did not include any populations from the United States, where *Uta* is widely distributed (including the type localities of both *stansburiana* and *stejnegeri*), and we have therefore refrained from adopting their taxonomic proposal until more information is obtained on the relationships of the United States populations.

Xantusia bezyi Papenfuss, Macey, and Schulte, 2001—Bezy’s Night Lizard *X. gracilis* Grismer and Galvan, 1986—Sandstone Night Lizard Lovich (2001, Herpetologica 57: 470–487), presented evidence that the population formerly designated *Xantusia henshawi gracilis* is evolving separately from other populations of *X. henshawi* and recognized it as a species.

X. henshawi Stejneger, 1893—Granite Night Lizard Lovich (2001, Herpetologica 57: 470–487) presented evidence that the populations of *Xantusia henshawi* represent at least three separately evolving lineages, though he did not propose recognizing them as species.

X. vigilis Baird, 1859 “1858”—Desert Night Lizard *X. v. arizonae* Klauber, 1931—Arizona Night Lizard Papenfuss et al. (2001, Sci. Pap. Nat. Hist. Mus. Univ. Kansas 23: 1–9) proposed that *X. v. arizonae* represents a different species than other populations of *X. vigilis* based on DNA and allozyme differences. Their study was based on a limited sample of *X. vigilis*, and we have therefore refrained from adopting their proposal until more information becomes available on the relationships of other *X. vigilis* populations.

Squamata — SNAKES

Compiled by Jeff Boundy, Jonathan Campbell, Brian Crother (Chair)
Drymarchon coexisting in northern Venezuela, representing South American (D. corais) and Central/North American (D. melanurus) taxa.

Elaphe Fitzinger, 1833—RATSNAKES
Utiger et al. (2002, Russian J. Herpetol. 9: 105–124), using molecular data, divided *Elaphe* into eight genera. New World *Elaphe* are part of a clade outside of Old World species, and Pantherophis Fitzinger, 1843, is resurrected for most North American species. The common name would be North American Ratsnakes. Pending further review, we retain the current concept of *Elaphe*.

E. alleghaniensis (Holbrook, 1836)—Eastern Ratsnake
See under *E. obsoleta*.

E. emoryi (Baird and Girard, 1853)—Great Plains Ratsnake
Burbrink (2002, Mol. Phylogenet. Evol. 25: 465–476), using molecular data, found *E. guttata* to comprise three clades, which he elevated to species level. *Elaphe guttata meahllmorum* was inferred not to be an evolutionary entity, and was synonymized with *E. emoryi*.

E. guttata (Linnaeus, 1766)—Red Cornsnake

E. obsoleta (Say, 1823)—Texas Ratsnake
Burbrink divided *E. obsoleta* into three species, with no subspecies, based on the congruence of morphological (2001, Herpetol. Monogr. 15: 1–53) and mtDNA (Burbrink et al. 2000, Evolution 54: 2107–2118) evidence.

E. slowinskii Burbrink (2002)—Slowinski’s Cornsnake
Burbrink (2002, Mol. Phylogenet. Evol. 25: 465–476), using molecular data, found *E. guttata* to comprise three clades, which he elevated to species level. The clade comprising populations in western Louisiana and eastern Texas were named *E. slowinskii*.

E. spiloides (Duméril, Bibron and Duméril, 1854)—Gray Ratsnake
See under *E. obsoleta*.

Farancia erytrogramma (Palisot de Beauvois in Sonnini and Latreille, 1801)—Rainbow Snake

Gyalopion Cope, 1860—WESTERN HOOK-NOSED SNAKES

G. canum Cope, 1860—Chihuahuan Hook-nosed Snake

Heterodon gloydi Edgren, 1952—Dusty Hog-nosed Snake
Werler and Dixon (2000, Texas Snakes. University of Texas Press, Austin) regarded *H. n. gloydi* to be an allopatric, diagnosable taxon restricted to the low plains-eastern forest ecotone of eastern Texas.

Laemophis triangularum (Lacépède, 1789)—Milksnake

L. zonata (Lockington, 1876 ex Blainville, 1835)—California Mountain Kingsnake
Rodríguez-Robles et al. (1999, Mol. Ecol. 8: 1923–1934) examined mtDNA and color pattern. The DNA suggested distinct northern and southern clades that they left unnamed. The color pattern variation was too variable to differentiate the seven subspecies. We follow these data and do not recognize any subspecies at this time.

Leptotyphlops dissectus (Cope, 1896)—New Mexico Threesnake
See *L. dulcis*.

L. dulcis (Baird and Girard, 1853)—Texas Threesnake
Dixon and Vaughan (2003, Texas J. Sci. 55: 3–24), using morphological data, elevated *L. d. dissectus* to species status, and diagnosed three subspecies within the nominate race, one of which remains unnamed. *L. d. dulcis* (Baird and Girard, 1853)—Plains Threesnake

L. d. rubellus (Garman, 1883)—South Texas Threesnake

Masticophis fuliginosus (Cope, 1895)—Baja California Coachwhip

Opheodrys aestivus (Linnaeus, 1766)—Rough Greensnake

Pituophis Holbrook, 1842—BULLSNAKES, GOPHERSNAKES, and PINESNAKES
Rodríguez-Robles et al. (2000, Mol. Phylogenet. Evol. 14: 35–50) used mtDNA data and corroborated the current view of *Pituophis* with three species: *melanoleucus*, *catenifer*, and *ruthveni*. However, the recognition of *ruthveni* rendered *catenifer* paraphyletic. Pending data to corroborate mtDNA data and argued for the recognition of *P. ruthveni*, despite lack of significant or independent differentiation from some populations of *P. c. sayi*.

Regina Baird and Girard, 1853—CRAYFISH SNAKES

R. septemvittata (Say, 1825)—Queen Snake

Sonora seminannulata Baird and Girard, 1853—Groundsnake
Werler and Dixon (2000, Texas Snakes. University of Texas Press, Austin) recognized the subspecies *S. s. taylori* as a diagnosable taxon occupying the Tamaulipan biotic province.

S. s. seminannulata Baird and Girard, 1853—Variable Groundsnake

S. s. taylori (Boulenger, 1894)—Southern Texas Groundsnake

Storeria occipitomaculata (Storer, 1839)—Red-bellied Snake

Tantilla cucullata Minton, 1956—Trans-Pecos Black-headed Snake

T. elegans (Baird and Girard, 1853)—Terrestrial Gartersnake
Bronikowski and Arnold (2001, Copeia 2001: 508–513) used cytochrome b sequence data to identify several clades within *T. elegans* that did not, in some cases, follow phenotypic subspecies boundaries. Hammerson (1999, Amphibians and Reptiles of Colorado. 2nd ed. University of Colorado Press, Boulder) found phenotypes assignable to *T. e. arizonae* and *T. e. vascothorneri* outside of their purported distributions within Colorado, and recommended that the two names be synonymized with *T. e. vagrans*. Hammerson’s data supported similar action for Arizona and New Mexico populations as well (J. Boundy, pers. obs.). Three subspecies are tentatively retained.

T. e. elegans (Baird and Girard, 1853)—Mountain Gartersnake

T. e. terrestris Fox, 1951—Coast Gartersnake

T. e. vagrans (Baird and Girard, 1853)—Wandering Gartersnake

T. sirtalis infernalis (Blainville, 1835)—Red-spotted Gartersnake

T. s. tetrataenia (Cope, 1875)—San Francisco Gartersnake

Crocodilia—Crocodilians

Crocodilus acutus Cuvier, 1807—American Crocodile

Testudines—Turtles

Compiled by John Iverson, Peter Meylan (Chair), Michael Seidel

Actinemys Agassiz, 1857—Pacific Pond Turtles

Emys and *Emydoidea* are retained despite the recommendation of Feldman and Parham (2002) to lump *Emydoidea* and *Actinemys* under *Emys* because those authors had not seen the argument by Holman and Fritz (2001) for recognizing *Actinemys* as a monotypic genus. We are in agreement with Holman and Fritz that retention of separate genera for *Emys* and *Emydoidea*, and using a third generic name for *Actinemys marmorata*, best serves to reflect the diversity in this monophyletic group. See *Clemmys*.

Emydoidea marmorata (Baird and Girard, 1852)—Pacific Pond Turtle

Emydoidea m. *marmorata* (Baird and Girard, 1852)—Northern Pacific Pond Turtle

Emydoidea m. *pallida* (Seeliger, 1945)—Southern Pacific Pond Turtle

Clemmys Ritgen, 1828—Spotted Turtles

Until recently (Holman and Fritz, 2001, Zoolog. Abhand. Staat. Mus. für Tierkunde Dresden 51: 331–354; and Feldman and Parham, 2002, Mol. Phylogenet. Evol. 22: 388–398) the content of the genus *Clemmys* was based on the work of McDowell (1964, Proc. Zool. Soc. Lond. 143: 239–279). This genus was considered to include a set of four North American species (*C. guttata*, *C. insculpta*, *C. marmorata*, and *C. muhlenbergii*) and was given the Standard English name, American Pond Turtles. Work by Bickham et al. (1996, Herpetologica 52: 89–97), Burke et al. (1996, Herpetologica 52: 572–584), Lenk et al. (1999, Mol. Ecol. 8: 1911–1922), Holman and Fritz (op. cit.), Feldman and Parham (op. cit.) and Seidel (2002a, Copeia 2002: 1118–1121) provide ample evidence that *Clemmys* (sensu lato) is paraphyletic with respect to the genera *Emys*, *Emydoidea* and *Terrapene*. *C. marmorata* has been shown to be the sister group of *Emys* and *Emydoidea* with the remaining species being paraphyletic with respect to this group and *Terrapene*. *C. insculpta* and *C. muhlenbergii* appear to be sister taxa and *C. guttata* appears to be the sister group to all remaining members of the Emydinae. Thus, the taxonomic revision suggested by Holman and Fritz (op. cit.) is advisable and is followed here. In this revision only the type species, *C. guttata*, is retained in the genus *Clemmys*. See notes for *Actinemys* and *Glyptemys*.

C. guttata Schneider, 1792—Spotted Turtle

Glyptemys Agassiz, 1857—Sculpted Turtles

See note for *Clemmys*.

G. insculpta (LeConte, 1830)—Wood Turtle

G. muhlenbergii (Schoepff, 1801)—Bog Turtle

Kinosternon hirtipes Wagler, 1830—Rough-footed Mud Turtle

Sternotherus carinatus (Gray, 1855 1856)—Razor-backed Musk Turtle

Trachemys Agassiz, 1857—Sliders

T. gaigeae (Hartweg, 1939)—Big Bend Slider

T. g. gaigeae (Hartweg, 1939)—Big Bend Slider