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Abstract

Testicular tissues from Anolis lineatopus were examined histologically to determine testicular structure, germ cell morphol-

ogies, and the germ cell development strategy employed during spermatogenesis. Anoles (N = 36) were collected from southern

Jamaica from October 2004 to September 2005. Testes were extracted and fixed in Trump’s fixative, dehydrated, embedded in

Spurr’s plastic, sectioned, and stained with basic fuchsin/toluidine blue. The testes of Jamaican Anoles were composed of

seminiferous tubules lined with seminiferous epithelia, similar to birds and mammals, and were spermatogenically active during

every month of the year. However, spermatogenic activity fluctuated based on morphometric data for February, May and June, and

September–December. Sequential increases for these months and decreases in between months in tubular diameters and epithelial

heights were due to fluctuations in number of elongating spermatids and spermiation events. Cellular associations were not

observed during spermatogenesis in A. lineatopus, and three or more spermatids coincided with mitotic and meiotic cells within the

seminiferous epithelium. Although the germ cell generations were layered within the seminiferous epithelium, similar to birds and

mammals, the actual temporal development of germ cells and bursts of sperm release more closely resembled that reported recently

for other reptilian taxa. All of these reptiles were temperate species that showed considerable seasonality in terms of testis

morphology and spermatogenesis. The Jamaican Gray Anole has continuous spermatogenesis yet maintains this temporal germ cell

development pattern. Thus, a lack of seasonal spermatogenesis in this anole seems to have no influence on the germ cell

development strategy employed during sperm development.

# 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Three major germ cell development strategies have

been described for vertebrates: anamniotes [1],

amniotes; birds and mammals [2,3]; and reptiles [4].

Anamniotes have testes composed of tubules/lobules

that are lined with cysts where germ cells develop

together as a single population and are typically

released into centralized lumina in a single spermiation

event [1,5]. Classical literature involving only birds and

mammals has shown that amniotic testes consist of

seminiferous tubules that are lined with seminiferous

epithelia in which germ cells develop and maintain

consistent spatial relationships during spermatogenesis

[2,6,7]. These consistent stages have two or three

spermatids consistently associated with the same early
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mitotic and meiotic germ cells within a single cross-

sectional view of a seminiferous tubule. Cellular

associations are also sequentially organized along the

length of the seminiferous tubules, which leads to waves

of sperm release from specific segments of the

seminiferous epithelia [2,8].

Recently, a new germ cell development strategy has

been described in reptilian testes, which have a

testicular structure similar to that of birds and

mammals. However, reptiles do not have their germ

cells organized into consistent cellular associations, and

up to five spermatids are grouped with earlier mitotic

and meiotic generations (similar to anamniotic amphi-

bians) [4]. This plesiomorphic-like temporal germ cell

development strategy has been recognized in all major

taxa of reptiles to date (Chelonia [4]; Sauria [9];

Crocodylia [10]; and Serpentes [11]). These results

demonstrate that this ancestral germ cell development

strategy within a structurally amniotic testis may

suggest decoupling of testicular organization and germ

cell development strategy within the amniotic lineage.

However, recent histologic evaluations of testicular

structure and germ cell development strategies within

reptiles have been restricted to temperate species only.

Spermatogenesis in these species is typically limited to

warmer months, due to the lack of resources, which are

presumably used to facilitate metabolically demanding

processes such as spermatogenesis [12] in colder

periods of the year. Several studies provided data on

continuous spermatogenesis in tropical lizards [13–15].

Nevertheless, none of these studies described the germ

cell development strategy employed during spermato-

genesis within the testis. Thus, no information exists

that provides evidence for whether continuous sperm

production has an affect on the germ cell development

strategy used by poikilothermic reptiles.

The purpose of the current study was to determine

the germ cell development strategy within the Jamaican

Gray Anole, Anolis lineatopus. This tropical anole is a

medium-sized (50 to 65 mm) lizard commonly found in

southern regions of Jamaica [16]. To date, information

regarding life history characteristics, including repro-

ductive characteristics of the Jamaican Gray Anole, is

extremely limited, and to our knowledge this was the

first study that explored spermatogenesis in this species.

Numerous reproductive studies involving anoles

have been performed on both temperate and tropical

species [14,17–20,21]; however, of the seven described

species of Anolis found in Jamaica [22], published

information regarding reproductive characteristics

exists only for A. opalinus (native) and A. sagrei

(introduced). A. opalinus testes are spermatogenically

active every month of the year [14]. Conversely, A.

sagrei has a more seasonal spermatogenic cycle [23].

Their testes are spermatogenically active from January

to August, regressed September to November, and

recrudescence begins in December. Data collected in

this study were compared with the reproductive cycles

of A. opalinus and A. sagrei and with known germ cell

development strategy described in temperate reptiles to

determine if continuous spermatogenesis had an effect

on the reproductive strategy employed during sperm

development in Reptilia.

2. Materials and methods

Adult male Jamaican Gray Anoles, Anolis line-

atopus, were collected (N = 36) from southern Jamaica

during every month of the year. Individuals were

killed via decapitation (as this species is too small for

proper intraperitoneal injection) and the testes were

dissected, immediately cut into transverse sections, and

stored in Trump’s fixative (EMS, Hatfield, PA, USA)

at 4 8C.

Testes were cut into small (3 mm) sections and

dehydrated through a graded series of ethanol solutions:

70%, 85%, 95% � 2, and 100% � 2, for 30 min each.

Tissues were then gradually introduced to Spurr’s

plastic (EMS) through a series of ethanol-plastic

combinations (2 pt EtOH:1 pt plastic, 1 pt EtOH:1 pt

plastic, 1 pt EtOH:2 pt plastic) before placing the tissue

into pure Spurr’s overnight on a rotary system. Tissues

were then embedded in newly synthesized 100% plastic

and allowed to cure for 2 d at 70 8C in a Fisher

Isotemperature vacuum oven (Fisher Scientific, Pitts-

burgh, PA, USA).

The plastic blocks were sectioned (2- to 3-mm

sections) using an LKB ultramicrotome (LKB Produk-

ter AB, Bromma, Sweden) and dry glass knife. The

sections were placed on glass slides and stained with a

toluidine blue/basic fuchsin stain as described by Hayat

[24]. Tissue samples were viewed using a Zeiss

compound microscope (Carl Zeiss MicroImaging

Inc., Thornwood, NY, USA) at various magnifications

to determine testicular organization and germ cell

morphologies present during each month. Photographs

of the samples were taken using an attached SPOT

digital camera (Diagnostic Systems Laboratories,

Webster, TX, USA), and composite plates were

constructed digitally using Adobe Photoshop CS

(Adobe Systems, San Jose, CA, USA).

Twenty cross sections of seminiferous tubules

representing each month were randomly chosen, and

the tubule diameter and germinal epithelial heights of

K.M. Gribbins et al. / Theriogenology 72 (2009) 484–492 485
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each were measured using an ocular micrometer. Data

analyses were performed using SigmaStat version 3.5

(Systat Software, Inc., San Jose, CA, USA) for Windows.

Results were deemed significant if a � 0.05. Tubule

diameter and germinal epithelial height data were tested

for normality and homogeneity of variances using the

Kolmogorov-Smirnov and Bartlett’s tests, respectively,

before statistical analyses were performed [25,26]. These

data did not meet assumptions of normality or homo-

geneity of variance; thus, nonparametric Kruskal-Wallis

analyses of variance were used to test for significant

monthly variation in seminiferous tubule diameter and

germinal epithelial height. Post hoc nonparametric

multiple comparison tests using Dunn-Sidak procedures

were then used to identify significant differences between

pairs of monthly means [27].

3. Results

3.1. Testicular morphology and cell cycle

The testes of A. lineatopus contained seminiferous

tubules, which had germinal epithelial linings that

surrounded centrally located lumina. The epithelia

contained developing germ cells and supporting Sertoli

cells. The testes were spermatogenically active during

the entire year, with multiple generations of sperma-

togenesis observed within a single cross-sectional view

of a monthly seminiferous tubule. Spermatogonia A and

B rested on the basal lamina of the seminiferous

epithelium and continuously underwent mitotic divi-

sions, ensuring new germ cell generation recruitment,

which replenished cells that had completed spermato-

genesis. Sertoli cell nuclei shared the basal compart-

ment with spermatogonia and surrounded generations

of developing germ cells with cellular processes as they

migrated centrally toward the lumen during the

maturation process.

3.2. Premeiotic cells

Two distinct premeiotic cells were visualized within

the testis of A. lineatopus; spermatogonia A and

spermatogonia B (Fig. 1; SpA and SpB). Spermatogonia

A (Fig. 1; SpA) were relatively ovoid in shape with

centrally located nuclei and two nucleoli within their

nucleoplasms. After a single mitotic division, sperma-

togonia A became spermatogonia B (Fig. 1; SpB),

which had more spherical nuclei and a single nucleolus.

These two premeiotic cells were found throughout the

entire year and served the purpose of replenishing the

germ cell population.

3.3. Meiotic cells

During meiotic divisions, the nucleus began to

increase in size, and the chromatin condensed into dark,

easily distinguishable chromosomes. Spermatogonia B

divided and entered prophase of meiosis I as pre-

leptotene cells (Fig. 1; PL). These spermatocytes were

approximately three-fourths the size of spermatogonia

B and were the smallest of the developing germ cells.

Leptotene spermatocytes (Fig. 1; LP) were easily

distinguished from pre-leptotene generations because

their nuclei were nearly filled with chromatin. Zygotene

spermatocytes (Fig. 1; ZE) had a more discernible

nucleoplasm and more intensely staining chromatin

fibers. Pachytene cells (Fig. 1; PA) were the second

largest spermatocytes next to diplotene cells. Their

larger cell size and open nucleoplasm distinguished

these meiocytes from zygotene spermatocytes. Diplo-

tene cells (Fig. 1; DI) were the largest in volume of the

spermatocytes and were found in close association with

pachytene spermatocytes. These cells had a degenerat-

ing nuclear membrane, and the chromatin fibers formed

a tight circle in juxtaposition to this membrane.

During metaphase of meiosis I (Fig. 1; M1),

chromosomes aligned on the midplate of each cell.

Secondary spermatocytes (Fig. 1; SS) marked the

interphase before meiosis II, and two or three

heterochromatic clumps could be seen within their

K.M. Gribbins et al. / Theriogenology 72 (2009) 484–492486

Fig. 1. Germ cell morphologies observed within the seminiferous

epithelium of Anolis lineatopus. Scale bar = 25 mm. SpA, spermato-

gonia A; SpB, spermatogonia B; PL, pre-leptotene spermatocyte; LP,

leptotene spermatocyte; ZE, zygotene spermatocyte; PA, pachytene

spermatocytes; DI, diplotene spermatocytes; M1, meiosis I; SS,

secondary spermatocytes; M2, meiosis II; S1, Step 1 spermatid;

S2, Step 2 spermatid; S3, Step 3 spermatid; S4, Step 4 spermatid;

S5, Step 5 spermatid; S6, Step 6 spermatid; S7, Step 7 spermatid; and

sperm, mature spermatozoa.
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nucleoplasm. During this stage, nuclear membranes had

reformed, and the entire cell remained relatively large.

Metaphase of meiosis II (Fig. 1; M2) was similar to

meiosis I, with the exception of being smaller in size

and having approximately half the amount of chroma-

tin.

3.4. Spermiogenic cells

Step 1 spermatids (Fig. 1; S1) were the outcome of

the two meiotic divisions. The acrosome vesicle of this

spermatid came in contact with the nuclear membrane

and created a fossa on the apical surface of its nucleus.

Step 2 spermatids (Fig. 1; S2) had slightly elongated

acrosome vesicles and more pronounced fossae on their

nuclei. The acrosome vesicle became deeply seated in

the nuclear fossa of each Step 3 spermatid (Fig. 1; S3).

Acrosome granules were often present against the inner

acrosomal membranes of Step 2 and 3 spermatids. Step

4 (Fig. 1; S4) spermatids were the transition between the

round spermatids (Steps 1 to 3) and the elongating

spermatids (Steps 5 to 7). Step 4 spermatids had well-

defined acrosome vesicles and granules, and their distal

nuclei began the elongation process, which resulted in

their slightly cylindrical nuclear shape. During Steps 5

to 7 (Fig. 1; S5 to S7), the nuclei continued to elongate

and the chromatin within each nucleus underwent

condensation, so that the final product of elongation was

a thin, elongated, and slightly bent nuclear head. Upon

completion of spermiogenesis, Step 7 spermatids were

released as mature spermatozoa (Fig. 1; Sperm).

3.5. Germ cell development strategy

Although spermiogenesis and spermiation occurred

during every month of the year, there were distinct

cycles between spermiogenesis/spermiation and the

early events of spermatogenesis. Furthermore, the

events of spermiogenesis seemed to be slower in

development than the consistent mitotic and meiotic

divisions, which resulted in layers of three to five

spermatids found within the seminiferous epithelia

during the months of the heaviest spermatid develop-

ment

Even though histologically the Jamaican Gray Anole

had continuous spermatogenesis throughout the year,

there were monthly variations in seminiferous tubule

diameter (Kruskal-Wallis: H = 192.38, df = 11,

P = 0.000; Fig. 2, top) and seminiferous epithelial

height (Kruskal-Wallis: H = 56.83, df = 11, P = 0.000;

Fig. 2, bottom), with significant trends over all sampled

months. Both the histologic and morphometric data

closely paralleled one another; we inferred that three

major spermiogenic and spermiation events occurred

during a calendar year within the Jamaican Gray Anole.

This cyclic pattern of spermiogenesis and sperm release

was best seen in the histologic sections and in the

seminiferous tubule diameters (TDs). Seminiferous

epithelial (SE) morphometrics had the same trends, but

not as dramatically as tubule diameter, which resulted in

only two major superscript groups occurring within the

seminiferous epithelial height data.

The first major wave of spermiogenesis occurred

during the month of February. An increase in the

spermatid population was apparent histologically

(Fig. 3) and morphometrically (Fig. 2, top, subscript

subset B) at this time, with elongation climaxing in the

February seminiferous tubules (TD, 246 mm; SE,

62.5 mm). January testes (TD, 212 mm; SE, 54 mm)

had fewer elongates and less spermiation than those of

February, and the seminiferous tubules at this time were

recovering from heavy late spermiogenesis and

spermiation present in December testes (described

shortly). March and April (Fig. 4) testes had few to no

spermatozoa in their lumina; a rebound in the round

spermatid population was occurring at this time to

replace the spermatids lost during spermiation in the

previous month. This loss of the spermatozoa popula-

tion and a decrease in luminal size resulted in a

significant drop in TD (March, 197 mm; April, 224 mm;

Fig. 2, top, superscript subset C, A) compared with

February.

The second major wave of spermiogenesis and

sperm release occurred in a 2-mo increment. May and

June (Fig. 5) had a considerable increase in both late

spermiogenesis and spermiation. The enlargement of

the SE in response to the increase in the elongate

population and an increase in lumina size in response to

a large burst of spermiation caused a significant boost in

TD (May, 286.5 mm; June, 292.5 mm; Fig. 2, top,

superscript subset D, E). Similar to the first wave, July

and August seminiferous tubules (Fig. 6) showed a

sizable decrease in the columns (Fig. 6B, black arrows)

of the SE and a reduction in the luminal size, which led

to a significant drop in TD (July, 194 mm; August,

220 mm; Fig. 2, top, superscript subset C, A).

The final wave of spermiogenesis and spermiation

occurred over 4 mouths and led to a continuous increase

in sperm release from September through December.

There was very little difference between these months

histologically (Figs. 7 and 8) except for an observable

increase in size of the columns of seminiferous

epithelium holding sequential generations of elongating

spermatids, and large cohorts of spermatozoa were

K.M. Gribbins et al. / Theriogenology 72 (2009) 484–492 487
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being released to the lumina of seminiferous tubules

over these months. The morphometrics (Fig. 2, top,

superscript subsets D, F) followed the histologic

observations robustly; the TD and the SE increased

significantly over these months, leading to the largest

TD and second highest SE measurements (TD, 318 mm;

SE, 68 mm) within December testes. Throughout all

months, spermatid generations (�5) were not consis-

tently associated with any of the earlier generations of

mitotic and meiotic cells. Thus, consistent cellular

associations were not present, and the germ cell

development strategy was temporal in nature within

each of the three cycles of spermiogenesis and

spermiation.

4. Discussion

The testes of A. lineatopus consisted of seminiferous

tubules lined with seminiferous epithelia where germ

cells matured into spermatozoa. Spermatogonia A and

B were present throughout the entire year in close

association with basally located Sertoli cell nuclei. This

testicular structure was similar to that reported in all

other major reptilian taxa (Chelonia [4]; Sauria [9];

Crocodylia [10]; Serpentes [11]) and similar to the

testicular structure exhibited by birds and mammals [8].

Although spermatogenesis occurred in every month

of the year, similar to that of other tropical lizards

[14,15,28], there were activity differences between each

K.M. Gribbins et al. / Theriogenology 72 (2009) 484–492488

Fig. 2. Top: Variation in seminiferous tubule diameter. Bottom: Variation in germinal epithelial height during the months of January–December

within the testis of Anolis lineatopus. Values represented on this graph are means � 1 SEM. A–FValues without a common superscript differed

significantly (P � 0.05; Dunn-Sidak multiple range test).
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phase of spermatogenesis during certain time periods

within the annual spermatogenic cycle of the Jamaican

Gray Anole. These inconsistencies seemed to be

between spermiogenesis and mitosis and meiosis.

Mitotic and meiotic activity was similar for every

month; however, spermiogenesis occurred in three

increasing waves of activity, with three rebound periods

between these waves within the annual cycle. Spermio-

K.M. Gribbins et al. / Theriogenology 72 (2009) 484–492 489

Fig. 3. (A) January and (C) February seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these two

months are similar in morphology, thus (B) (January) is a representative micrograph of a low-power seminiferous tubule for January and February.

Scale bar = 100 mm. Represented cell types within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B; PL, pre-

leptotene spermatocyte; LP, leptotene spermatocyte; PA, pachytene spermatocyte; ss, secondary spermatocyte; s1, Step 1 spermatid; s2, Step 2

spermatid; s6, Step 6 spermatid; s7, Step 7 spermatid; and MS, mature spermatozoa.

Fig. 4. (A) March and (C) April seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these two

months are similar in morphology, thus (B) (March) is a representative micrograph of a low-power seminiferous tubule for March and April. Scale

bar = 100 mm. Represented cell types within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B; PL, pre-

leptotene spermatocyte; PA, pachytene spermatocyte; ss, secondary spermatocyte; s1, Step 1 spermatid; s2, Step 2 spermatid; s4, Step 4 spermatid;

s5, Step 5 spermatid; s6, Step 6 spermatid; and MS, mature spermatozoa.

Fig. 5. (A) May and (C) June seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these two months

are similar in morphology, thus (B) (May) is a representative micrograph of a low-power seminiferous tubule for May and June. Scale bar = 100 mm.

Represented cell types within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B; PL, pre-leptotene spermatocyte;

s1, Step 1 spermatid; s2, Step 2 spermatid; s4, Step 4 spermatid; s6, Step 6 spermatid; s7, Step 7 spermatid; and MS, mature spermatozoa.
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Fig. 6. (A) July and (C) August seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these two months

are similar in morphology, thus (B) (June) is a representative micrograph of a low-power seminiferous tubule for July and August. Scale

bar = 100 mm. Note black arrows in (B) point to columns of seminiferous epithelia that hold developing stages of spermatids. Represented cell types

within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B; PL, pre-leptotene spermatocyte; LP, leptotene

spermatocyte; PA, pachytene spermatocyte; ss, secondary spermatocyte; s1, Step 1 spermatid; s3, Step 3 spermatid; s4, Step 4 spermatid; s5, Step 5

spermatid; s6, Step 6 spermatid; s7, Step 7 spermatid; and MS, mature spermatozoa.

Fig. 7. (A) September and (C) October seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these two

months are similar in morphology, thus (B) (September) is a representative micrograph of a low-power seminiferous tubule for September and

October. Scale bar = 100 mm. Represented cell types within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B;

PL, pre-leptotene spermatocyte; s1, Step 1 spermatid; s2, Step 2 spermatid; s5, Step 5 spermatid; s6, Step 6 spermatid; s7, Step 7 spermatid; and MS,

mature spermatozoa.

Fig. 8. (A) November and (C) December seminiferous epithelia with represented cell types. Scale bar = 30 mm. The seminiferous tubules of these

two months are similar in morphology, thus (B) (November) is a representative micrograph of a low-power seminiferous tubule for November and

December. Scale bar = 100 mm. Represented cell types within the germinal epithelia of both months: SpA, spermatogonia A; SpB, spermatogonia B;

LP, leptotene spermatocyte; DI, diakinesis; ss, secondary spermatocyte; s1, Step 1 spermatid; s2, Step 2 spermatid; s3, Step 3 spermatid; s5, Step 5

spermatid; s6, Step 6 spermatid; s7, Step 7 spermatid; and MS, mature spermatozoa.
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genesis climaxed in February, May and June, and

September–December, and major spermiation events

occurred at the end of these spermiogenic peaks,

leading to burst of spermatozoa release during these

months. Between spermiogenic peaks, the seminiferous

epithelium was in spermiogenic rebound where new

round spermatids were recruited from spermatocytes

that had just completed meiosis. These recovery events

lead to drops in TD and SE over the months of January,

March/April, and July/August. These waves of sper-

miogenic activity may explain the inconsistencies

reported in other anoles regarding spermatogenic

activity reported and in other studies within lizards

that use testicular mass as a measure of testis activity

[14,28,29].

Typically in more northern lizards with temporal

germ cell development, spermiogenesis ensues in one

extended event [4]. These lizards frequently have

seasonal spermatogenesis and mating due to the long,

cold winters, which hinder the energy intake required to

maintain such demanding metabolic processes as

spermatogenesis [12]. Anolis lineatopus occupies a

tropical niche where resources are available year-round

and can maintain the three large spermiogenic events

seen during spermatogenesis. Because spermatozoa are

released over these three increased periods of spermio-

genesis, which span the entire annual cycle, A.

lineatopus potentially can mate throughout the year.

Unfortunately, to the best of our knowledge, there is no

published information that specifically details when the

Jamaican Gray Anole reproduces. Our data, however,

closely resembled that reported for A. opalinus in

Jamaica [14]. Though fluctuations are observed in testis

mass in this species of anole, histologically their testes

were always active in spermiogenesis and spermiation,

and the epididymis was packed with sperm year-round.

Furthermore, this study also reported that male A.

opalinus were observed copulating with females in

every month of the year. Thus, A. lineatopus most likely

practices the same type of reproductive behavior as A.

opalinus and would potentially reproduce with fertile

females at any time during the year.

Although the Jamaican Gray Anole has continuous

spermatogenesis like many birds and mammals, its

germ cell development strategy was more reminiscent

of that in anamniotes. This temporal germ cell

development was much different than the typical

spatial amniotic germ cell development strategy found

in mammals and birds [6,30–34]. The temporal

development of cohorts of germ cells within the

seminiferous epithelium of A. lineatopus was similar

to the germ cell development strategy in more temperate

squamates [4,11,35]. The waves of spermiogenesis

were also consistent with the Agkistrodon piscivorus

[11] and the introduced Hemidactylus turcicus within

Louisiana (Gribbins, unpublished data). These two

reptile populations inhabited more moderate temperate

regions (Louisiana) within their northern ranges. Thus,

they have more warm months in which to maintain

spermatogenesis and consequently can support multiple

waves of spermiogenesis unlike, for example, Podarcis

muralis (Ohio) [9] or the Seminatrix pygaea (Georgia)

[36], which support only one major wave of spermio-

genesis in the summer months. Overall, based on our

data, whether a reptile practices continuous or seasonal

spermatogenesis has no impact on the germ cell

development strategy employed by the reptiles studied

to date. There are simply modifications to the number of

spermiogenic waves seen during germ cell development

within temperate versus tropical species.

Anolis lineatopus adhered strictly to the temporal

development strategy previously described for other

reptiles and for anamniotes such as anurans. However,

the testis of A. lineatopus differed from anamniotes in

that the seminiferous tubules, like other amniotes, are

not lined with cysts. Thus, this anole supported a

plesiomorphic-like germ cell development strategy

within the typical tubular testis of amniotes, which was

considered a synapomorphy for this clade. As birds are

direct descendants of the reptilian group Archosauria,

then the spatial germ cell development within birds

should be considered a synapomorphy for Aves.

Linking the spatial germ cell development strategy

shared by Aves and Mammalia evolutionarily is more

difficult. Mammals are considered a sister taxon to

modern reptiles and do not share a common ancestor

with birds [37,38]. Thus, the most parsimonious

explanation is convergence of the spatial pattern of

germ cell development when considering mammals

and birds, which may be linked to the practice of

homeothermy in these two amniotic groups. Our

understanding of germ cell development strategy and

the evolution of the process of spermatogenesis in

reptiles have increased over the last 6 yr. However,

other tropical, semitropical, and temperate reptiles

should be studied along with basal Monotremata

mammals so that our understanding of spermatogenesis

and the evolution of the testis within the amniotic clade

becomes clearer.
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