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Determination of the correct criteria for K-systems reconstruction

D.R. McCarthy*, G.P. Shaffer and C. Jeansonne
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(Received 15 December 2008; final version received 8 May 2009)

One of the essential components of the K-system reconstruction process is the
determination of which state or substate contributes the greatest to the reconstruction.
In the literature, there have been two competing criteria used, both of which are based
upon a quantity known as the ‘information-theoretic transmission’, which is defined as
k log k=k0, where k is the information in the actual substate, and k0 is the information in
the reconstructed substate. One approach uses this quantity, while the other uses the
quantity k log k=k0 þ ð1 2 kÞ log ð1 2 kÞ=ð1 2 k0Þ. It had been implicitly assumed that
both approaches gave the same result (i.e. the substate that would make the greatest
contribution to the reconstruction would have a maximum value for both of these
quantities). In this paper, we show empirically that in general they do not give the same
results, and that the latter criterion predicts the substate that yields the optimal
reconstruction. We then derive the correct criterion and demonstrate that this result is
consistent with fundamental principles of information theory.

Keywords: K-systems analysis; reconstructability analysis; information theoretic
transmission; substates; system function

1. Introduction

Systems with one or more dependent quantities that are governed by several independent

variables are ubiquitous in nature. Indeed, it is hard to find any discipline, be it in the

natural sciences, the social sciences, industrial situations or even financial systems, that

cannot provide scores of examples of such systems. Not only are they found everywhere,

but the understanding of these systems is the subject of numerous active research projects:

what factors or combinations of factors lead to the greatest material strength? What factors

determine the greatest change in the population or growth of a living organism? Of age,

race, educational level, income level, which have the greatest impact on voter turn-out? As

varied as are these examples, just as varied is the complexity of the governing systems,

many of which are characterised by strongly nonlinear behaviour. The goal of most studies

of this nature is to explain the behaviour of the dependent system based upon the

independent variables and their interactions, which can be extremely difficult for highly

nonlinear systems with many interacting variables (Shaffer 1997).

The most common approach to understand the complex systems is to collect multi-variate

data and subject them to statistical analyses, often using multiple regression or analysis of

variance (Tabachnick and Fidell 2001, Johnson and Wichern 2002, Zar 2008). The basic idea

is to map the data onto some predetermined functional form (e.g. general linear model) and

then find the function that produces the best fit. The ‘best fit’ is typically determined by a
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statistical criterion, such as minimising the variance between the actual data and the estimated

function. Such techniques are well established and numerous programs exist (e.g. SAS,

SYSTAT, SPSS) that allow the researcher to perform such analyses. Regression methods have

the advantage that they produce a mathematical relation with parameters that quantify the

function and this can help when one is trying to build a first principles model of the system.

However, such techniques also have some weaknesses, the most obvious one is that traditional

statistical techniques effectively ‘force’ the data into an assumed model. For simple systems,

this is fine; but for complex nonlinear systems, this can be problematic and misleading

(Shaffer and Cahoon 1987, Gouw 1995, Gouw and Jones 1995, 1996). Moreover, for data that

are expansive, and cover a broad range of variables, the functional forms that truly describe the

system can vary from linear, to periodic, to chaotic, to singular and the nature of relationships

can and do vary in space and time (Shaffer 1988a) and may even include phase shifts (Shaffer

and Sullivan 1988). Although multiple regression analysis may explain the majority of the

variability in a dependent variable, it generally does not explain the underlying processes that

determine system behaviour (Shaffer and Cahoon 1987, Shaffer 1997). About two decades

ago, an alternative technique for analysing complex systems was developed. The technique,

which is not based at all upon statistical mapping, but rather is based upon the principles of

information theory (Klir 1976, 1981, 1985, Shaffer and Sullivan 1988) and reconstructability

analysis (RA; Cavallo and Klir 1981, 1982a, 1982b, Klir 1986, Zwick 1996, 2004a, 2004b,

Zwick and Johnson 2004, Zwick and Shervais 2004, Zwick and Shu 1997, 2004), and is

known as ‘K-systems analysis’ (Shaffer and Cahoon 1987, Shaffer 1988a, 1988b, Jones 1989,

Trivedi 1993, Gouw 1995, Gouw and Jones 1995, 1996, Trivedi and Jones 1997, Trivedi et al.

1998, 2002) or ‘entropy data analysis’ (Jones 1984, 1985a, 1985b, 1985c, 1985d, 1989). The

fundamental technique was originally proposed by Klir (1981) and was developed extensively

by Bush Jones in 1984–1985 with a series of seminal papers (Jones 1984, 1985a, 1985b,

1985c, 1985d, 1989) rich in mathematical rigour that developed the theory of K-systems

analysis further. To date, K-systems analysis has been used to describe systems including:

antibiotic fermentation and extraction (Liu et al. 2000, Zhang et al.2000), baldcypress swamp

production (Hoeppner and Shaffer 2004), dam impact analysis (Shu 2000), data mining (Chen

1994), estuarine ecosystems (Shaffer and Cahoon 1987, Shaffer 1988a, 1988b, 1997, Shaffer

and Sullivan 1988, Trivedi et al. 1998), fisheries management (Zhang et al. 2000), gene

sequencing (Zhihong et al. 2004), macroeconomic policy (Liu et al. 2000) and mining

operations (Hong et al. 2000). Nevertheless, the theory of K-systems analysis has had little

development (Hoeppner and Shaffer 2004, Zwick and Johnson 2004, Johnson 2005) since the

work of Jones (1984, 1985a, 1985b, 1985c, 1985d, 1989). Indeed, at this point, the only

commercially available software package for K-systems analysis is a program developed in

1985 (Jones 1985d, 1989) which was written for DOS, and nearly every paper on K-systems

analysis is descriptive in nature, and either discusses an application of K-systems analysis or

redescribes Jones’ work (Trivedi and Jones 1997, Trivedi et al. 1998, 2002).

Just because there has been little theoretical development of K-systems analysis, that is

not to say that the theory is fully developed and understood. In fact, there are a number of

unresolved issues and misunderstandings that currently exist in K-systems analysis, to the

point that there are recent publications that use different techniques to perform the analysis

(Zwick and Johnson 2004), but provide no explanation as to why this is being done. In this

paper, we will provide a brief overview of the techniques and the principles behind

K-systems analysis and point out one of the main discrepancies that exists in the theory.

We resolve this discrepancy by showing empirically that these two techniques produce

different results and that one gives the correct answer. We then derive what the correct

criterion should be and relate our findings to the underlying principles of information theory.

D.R. McCarthy et al.2
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2. K-systems overview

The theory of RA has existed informally since the early 1960s (Ashby 1964) and was more

fully developed in the 1970s (Klir 1976, Cavallo and Klir 1979, Klir and Uttenhove 1979)

and early 1980s (Cavallo and Klir 1981, 1982a, 1982b). The fundamental premise behind

RA is that a probabilistic system that contains all of the information of the system can be

‘reconstructed’ from a system that contains no information, i.e. a system in which all

dependent variable values are identical or a ‘flat’ system. The way that this is done is to

measure the relative information within each state or substate (this concept will be

described in more detail later) and then use this substate to add information to the flat

system. Continuing with this process, eventually the initial system will be recovered, and

the process of reconstruction helps to describe which substates are the most important. In

1981, Cavallo and Klir recognised that a general system that consists of real physical data

could be transformed into a probabilistic form by normalising the dependent variable so

that the sum of the function added to unity. Therefore, if the general system is defined by

the function gðx1; x2; . . . ; xnÞ where xi are the independent variables of which there are n,

the transformed function is given by

kðx1; x2; . . . ; xnÞ ¼ gðx1; x2; . . . ; xnÞ=t; ð1Þ

where

t ¼
X

xi

gðx1; x2; . . . ; xnÞ; ð2Þ

where the sum is over all combinations of the independent variables. If each variable xi has

mi values, then the full system will have m1 £ m2 £ · · · £ mn values. The transformation

from this general state (known as the g-system) to the normalised state (dubbed the

K-system in homage to George J. Klir) is the initial part of the K-systems analysis process.

(Note: throughout this article, we are employing a notation that is considerably different

from that of Jones and the other authors. It is less compact but more descriptive, and is in a

form that we feel helps elucidate the underlying mechanisms of K-system analysis.)

The next step is to evaluate the substates. From a mathematical point of view, the

substates are sums of the system function over specified variables with the other

variable(s) held fixed. From a physical point of view, the substates contain all of the

information and behaviour of function for the variable for which the substate is defined.

For example, if one has a function with three independent variables, in addition to the

system function itself, there would be six additional substates defined as follows:

k1;2ðx1; x2Þ ¼
X

x3

kðxÞ k1;3ðx1; x3Þ ¼
X

x2

kðxÞ k2;3ðx2; x3Þ ¼
X

x1

kðxÞ; ð3Þ

k1ðx1Þ ¼
X

x2;x3

kðxÞ k2ðx2Þ ¼
X

x1;x3

kðxÞ k3ðx3Þ ¼
X

x1;x2

kðxÞ; ð4Þ

where we have used the notation x ¼ ðx1; x2; x3Þ. The substates shown in Equation (3) are

those that include the interactions between two variables, and those in Equation (4) show

the main effects of each variable on the system. For this system, the substates ki;j will have

mi £ mj values each, and the substates ki will have mi values. Note also that each substate is

a separate K-system itself and if one sums over all values within each subsystem, the sum

will add to unity.

International Journal of General Systems 3
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We are now at the stage where we can begin the actual reconstruction process. As was

stated earlier, the basic idea is to start from a state of no relative information (or maximum

entropy), and then add substates until we recover a sufficient representation of the actual

system. The state with the maximum entropy, or greatest amount of disorder, is the one in

which all values of the function have the same value, and that value would be

1=ðm1 £ m2 £ · · · £ mnÞ. All of the substates would have uniform initial values that are based

upon the dimensionality of those functions. With this flat function, we can calculate the total

‘information-theoretic transmission’ (Johnson 2005), which can be thought of as a measure

of distance between the flat and the actual system. This quantity is defined as follows:

T ¼
X

x

kðxÞ log
kðxÞ

k0ðxÞ
; ð5Þ

where k0ðxÞ is the flat system. This function is closely related to the Shannon entropy p log p,

where p is a probability that is used extensively in information theory (Shannon 1948).

Typically, for uses related to information theory, the base that is used for the logarithm is 2.

For the K-systems application, the proper choice also should be to use base 2; however, for

practical purposes, it does not matter which base is used. The absolute value of this quantity

does not come into play at all in the reconstruction process, only the relative value, and since

different base logarithms vary by the same factor, the relative change will be independent of

the base of the logarithm.

There is little argument that the proper way to perform the reconstruction is to add to

the flat system the state (or substate) that contributes to the greatest reduction in T. Johnson

directly states: ‘At each step, the candidate parameter that results in the greatest reduction

in T is selected for inclusion in the model’ (Johnson 2005) and such sentiments are stated

many times by Jones. Once one has determined the most important substate, the values of

the flat system are multiplied by the ratio of the real system to the reconstructed system.

All other variables are multiplied by the factor that ensures that the reconstructed system

remains probabilistic (i.e. the values all add to unity).

As an example of this procedure, we choose a simple three variable system where each

variable has just two values, 0 or 1. Since there are eight total combinations of variables,

and eight data points, the flat system will have k0ðxÞ ¼ 0:125. Suppose that the substate that

makes the greatest contribution to the reconstruction is k1;3ð1; 0Þ ¼ 0:4 and that the other

terms in this substate have the value 0.2. Therefore, this substate and its associated flat

substate will be the ones that will determine the reconstruction. The flat substate will have

the values of 0.25 for all terms as there are four substates for k1,3. Therefore, all terms in

the full (flat) system that have x1 ¼ 1 and x3 ¼ 0 will be multiplied by the factor

k1;3ð1; 0Þ

k01;3ð1; 0Þ
¼

0:4

0:25
¼ 1:6

and all other terms will be multiplied by the factor

k1;3ð0; 0Þ þ k1;3ð0; 1Þ þ k1;3ð1; 1Þ

k01;3ð0; 0Þ þ k01;3ð0; 1Þ þ k01;3ð1; 1Þ
¼

1 2 k1;3ð1; 0Þ

1 2 k01;3ð1; 0Þ
¼

0:6

0:75
¼ 0:8:

With these points in mind, the first reconstruction will now read k0ð1; 0; 0Þ ¼ 0:2,

k0ð1; 1; 0Þ ¼ 0:2 (i.e. 0.125 £ 1.6), and all other terms will equal 0.1 (0.125 £ 0.8).

We can then calculate the new value of the transmission, and if it reduces the value of the

D.R. McCarthy et al.4
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initial transmission by 45%, for example, we can state the following result: ‘The state with

variable 1 equal to 1 and variable 3 equal to zero contributes 45% of the information of the

system and has the effect of increasing our dependent variable by 60%’. This process is

continued with the new reconstruction, until enough substates have been added to reach a

desired level of accuracy.

3. Determining the most important subsystem

The missing item of information that was not addressed in the previous section was,

‘how does one determine the substate that will contribute to the greatest decrease in the

total transmission?’ The answer to this question is the main point of this paper. One way to

find this out is to simply try every possible reconstruction from every substate and from

there isolate the one that has the greatest impact. Not only is this unappealing from an

aesthetic point of view, it is remarkably time intensive. For example, for a system with

four variables, each with only three values, there are 81 states, and an additional 174

substates! Jones originally derived a criterion, and he concluded that the following term,

which when maximised, would find the state or substate that would lead to the greatest

reduction in the total transmission:

VaðxÞ ¼ kaðxÞ log
kaðxÞ

k0aðxÞ
þ ð1 2 kaðxÞÞ log

1 2 kaðxÞ

1 2 k0aðxÞ
; ð6Þ

where the subscript a refers to any substate including the individual system states. The

derivation itself included some non-obvious statements and assumptions that, at least to

us, never produced a satisfying answer as to why the second term should exist. Having said

that, this was the criterion that Jones and every subsequent publication used to perform the

reconstructions. Other authors, in particular those who have published work more recently

on K-systems analysis (Johnson 2005), have used the information-theoretic transmission

itself, which is Equation (6) without the second term

TaðxÞ ¼ kaðxÞ log
kaðxÞ

k0aðxÞ
ð7Þ

to evaluate which substate made the greatest contribution, the implicit reason being that

both approaches produce the same result. This is not the case; using data directly from one

of Jones’ papers (Jones 1985a), we find that in just the first reconstruction, there is a

discrepancy. Details of our analysis are shown in Table 1. Using Equation (7) to choose the

most important state, we find that the state k2;3ðx2 ¼ 1; x3 ¼ 2Þ has the largest value of Ta.

However, when we use the criterion as proposed by Jones and defined in Equation (6), we

find that the substate k2ðx2 ¼ 1Þ has the greatest value of Va. The question remains as to

which state is the ‘best’ one in terms of performing the reconstruction. When the substate

with the maximum value of Ta is used in the reconstruction, the transmission drops from

0.529 to 0.216. Therefore, this substate contributes 59.2% of the total information in the

system. When the substate with the maximum value of Va is used to reconstruct the flat

system, the transmission is reduced to 0.203, capturing 61.6% of the information.

Certainly no concrete conclusions can be drawn from one example, however, from this one

demonstration clearly the two criteria do not produce the same results, and based upon this

one example, it would indicate that the criterion from Equation (6) is the one that produces

the best reconstruction.

International Journal of General Systems 5
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Such an observation merits a more thorough theoretical investigation. Because the change

in the total information-theoretic transmission is considered to be the most important quantity,

we examine the change in this quantity after one reconstruction. Defining T0 as the initial

transmission, and T1 as the transmission of the system after the first reconstruction, we have

T0 2 T1 ¼
X

k log k=k00 2
X

k log k=k01 ¼
X

k log k01=k
0
0; ð8Þ

where k00 is the initial (flat) state, and k01 is the first reconstructed state. We now examine the

quantity k01=k
0
0. Referring to the example from Section 2, this quantity can have either one of

two values. If the state is an element of the substate that we are using for the reconstruction, we

use the relation

k01 ¼ k00
ka

k0a0

; ð9Þ

where ka is the value of the real substate, and k0a0 is the value of the substate from the initial

reconstruction (i.e. the flat state). If the state is not an element of the substate that we are using

for the reconstruction, we use the relation

k01 ¼ k00
1 2 ka

1 2 k0a0

: ð10Þ

Inserting Equations (9) and (10) into Equation (8), we have the relation

T0 2 T1 ¼
X

k[ka

k log
ka

k0a0

þ
X

k�ka

k log
1 2 ka

1 2 k0a0

: ð11Þ

Recognising that the quantities ka=k
0
a0 and ð1 2 kaÞ=ð1 2 k0a0Þ are constants, we rewrite

Equation (11) as

T0 2 T1 ¼ log
ka

k0a0

X

k[ka

k þ log
1 2 ka

1 2 k0a0

X

k�ka

k: ð12Þ

The first summation is the sum of all states that are elements of the substate that we have

chosen, so the value of this sum is ka itself. Using a similar reasoning, the second sum equals

1 2 ka. Therefore, the change in the total information-theoretic transmission due to a substate

ka will equal

T0 2 T1 ¼ ka log
ka

k0a0

þ ð1 2 kaÞ log
1 2 ka

1 2 k0a0

; ð13Þ

which is the same relation stated in Equation (6). It is important to note that this derivation is

general and holds true for any substate ka. Clearly the substate that produces the greatest value

of Va will produce the greatest reduction in the transmission, as the quantities are indeed

equivalent. Equation (13) can be readily generalised for the nth reconstruction to read

Tn 2 Tnþ1 ¼ ka log
ka

k0an
þ ð1 2 kaÞ log

1 2 ka

1 2 k0an
: ð14Þ

International Journal of General Systems 7

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
c
C
a
r
t
h
y
,
 
D
.
 
R
.
]
 
A
t
:
 
1
4
:
1
1
 
2
2
 
J
u
l
y
 
2
0
0
9



4. Discussion and conclusions

We have demonstrated empirically and derived a condition that shows that the best

subsystem to be used in a K-systems reconstruction is one that has the largest value of the

quantity Va ¼ ka log ka=k
0
a0 þ ð1 2 kaÞ log ð1 2 kaÞ=ð1 2 k0a0Þ. Further insight as to why

this is an expected result can be gained by referring to the original work by Shannon on

information theory. In this work, Shannon derived the quantity S ¼ 2p log p where S

denoted the ‘entropy’ or information within a system, and p is the probability of occupying

a state that exists within that system. The important point is that this quantity only has

meaning when the term p log p is summed over all states. Therefore, relating this back to

the K-system reconstruction process, when one evaluates the quantity ka log ka=k
0
a0 on its

own, it does not have any meaning as related to overall system behaviour. To know what

the impact of a substate is on the entire system, one has to add the information (or

transmission in this case) that the substate is occupied, and the information that the

substate is unoccupied. Therefore, it follows that the term ka log ka=k
0
a0 (the transmission

association with occupying the substate ka) must be added to ð1 2 kaÞ log ð1 2 kaÞ=ð1 2

k0a0Þ (the transmission of not occupying ka).

Of course, every new insight into a process raises new questions that merit attention.

The reader may notice that in the example used to illustrate the difference between the

two criteria, that although each approach gave different results, in reality, they really

were not that different. When Ta was used, the most important state had a value of

T2;3ð1; 2Þ ¼ 0:643 while the second most important state was T2ð1Þ ¼ 0:592. In the case

of using Va, we found that the most important state was V2ð1Þ ¼ 0:327 while the second

most important was V2;3ð1; 2Þ ¼ 0:314. In other words, the results from both approaches

are quite similar, and in a qualitative sense, they both do a good job of identifying the

important states. In both cases, the difference between the most important state and the

second most important state was less than 10%, which begs the question, ‘How good

were the data in the first place?’ If the data themselves have an inherent uncertainty of

20% (which is not uncommon at all in ecological systems), then what really is the

‘most important state?’ One of the acknowledged weaknesses of K-systems analysis is

the lack of statistical rigour, and the coarse and occasionally qualitative nature of

the analysis. Results are only as good as the data, and without a quantitative description

of the limitations of the data and how these limitations impact the results of the analysis,

the relevance of any analytic method is limited at best. The issue of propagation of

error as applied to K-systems analysis is a topic that will be addressed in a subsequent

manuscript.
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